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Abstract 

Disorder in both allotropic phases of pure single- 
crystalline cobalt was studied by elastic neutron 
scattering in order to separate bulk from surface effects 
and to remove diffuse inelastic contributions. The 
intensity variation along 10l, measured at different 
temperatures, was analysed quantitatively in terms of 
Jagodzinski's disorder theory. The values found for the 
degree of disorder in the h.c.p, phase were lower than 
those reported before for powder samples and remain 
nearly unaffected when approaching the transition 
temperature. The f.c.c, phase is always (below and 
above the transition) well ordered. However, the 
temperature behaviour of the f.c.c, and the h.c.p. 
precursor regimes in the h.c.p, and the f.c.c. 
modifications, respectively, is different. The connection 
between disorder and the martensitic h.c.p.-f.c.c. 
transformation is discussed. 

I. Introduction 

Pure single-crystalline cobalt exists in two close-packed 
modifications: the h.c.p, form is stable below Tm~ 700 
K and transforms into the f.c.c, modification above Tin. 
There are some controversial findings about an 
additional transformation from the f.c.c, again into the 
h.c.p, phase by passing the Curie temperature T c = 
1394 K (Cobalt Monograph, 1960). This point is not 
considered in this paper. Owing to the geometrical 
similarity of the two types (the e/a ratio of 1.623 is 
nearly the ideal value k/g-/-J), a small volume change of 
0.2%, the same coordination of the next-nearest 
neighbours, and a small difference of about 420 J (g 
atom) -1 in the free energies of the two forms (Cobalt 
Monograph, 1960), a mixing of the two phases, i.e. an 
intergrowth of h.c.p, and f.c.c., as well as disorder 
phenomena concerning irregularities in the correct 
sequences of close-packed layers, was observed. The 
extent to which these phenomena occur is known to be 
heavily influenced by the thermal history, the purity - 
particularly alloying with Fe - the grain size and the 
actual values of temperature and pressure (Schumann, 
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1969). Most investigations were hitherto carried out on 
powder specimens with various degrees of particle size. 
However, with respect to the detailed theoretical 
considerations on one-dimensional disorder it is 
surprising that only a few quantitiative measurements 
on single crystals of Co were carried out (Kajiwara, 
1970; Creagh, Bailey & Wilson, 1975). To the 
knowledge of the authors no such diffraction experi- 
ments with X-rays or neutrons are reported. As 
emphasized by Houska, Averbach & Cohen (1960) 
results obtained on powder samples do not necessarily 
apply to the bulk single crystal where surface and size 
effects are not the dominating factors. 

We performed elastic neutron measurements mainly 
for two reasons: to remove the diffuse inelastic 
contributions to the disorder scattering - which is 
important for a quantitati.ve analysis - and, secondly, 
to separate bulk from surface effects. By these 
measurements we wanted to determine the exact degree 
of disorder in both modifications and its variation as a 
function of temperature. The last point was suspected 
to be connected with the h.c.p.-f.c.c, transformation 
mechanism which is martensitic, that means, of 
strongly first order. Together with results obtained 
earlier from inelastic neutron investigations (Frey, 
Prandl, Schneider, Zeyen & Ziebeck, 1979), this should 
shed some light on the microscopic origin of a 
martensitic transformation. 

II. One-dimensional disorder 

Stacking disorder in Co is due to irregular sequences of 
the hexagonal close-packed layers along the hexagonal 
[001] or one of the cubic (111) directions. With the 
ABC notation for the two close-packed arrangements, 
perfect ordering as well as the various types of faults in 
the stacking sequence can easily be seen from a 
projection on a hexagonal {110} or a cubic II12} 
plane. In Fig. 1 the well known facts are summarized. 
Any interruption in the correct (h.c.p. or f.c.c.) 
sequences produces a regime belonging to the other 
allotropic type. A deformation- (= slip- = trans- 
formation-) type fault can be created either by a real 
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deformation or by two grains growing together; 
so-called growth faults can only result from a growth 
mechanism. For producing a defect in Co an energy of 
67 J mol -~ is needed (Jeanjean, Dubois, Fetiveau & 
Rivi+re, 1972). Stacking faults are limited in the (001) H 
or the { 111 }c planes by half-dislocations with Burgers 
vectors of the type an~3[120] and ac/6[112], 
respectively. 

As shown elsewhere (e.g. Wilson, 1962), in a 
diffraction pattern of h.c.p. Co there are strong and 
sharp reflections hkl with h - k = 3n, l = 2n (n being 
an integer), while all others are more or less diffuse 
along e*. Exactly on these diffuse rods cubic reflections 
can occur which do not coincide with the hexagonal 
reciprocal lattice at positions l = (2n + 1) - ]. In the 
hexagonal a* - e* plane, where we performed all our 
measurements, other 'pure' cubic reflections may be 
observable owing to further cubic twins coexisting with 
the h.c.p, phase [at l = (2n + 1) + ]]. For a quantitative 
analysis of the degree of disorder a careful analysis of 
the diffuse intensity distribution along the rods parallel 
to e* is needed. In particular, diffuse contributions of 
inelastic origin have to be excluded. The corrected 
diffuse intensity can then be analysed in terms of an 
appropriate theory. 

For the solution of one-dimensional disorder prob- 
lems several methods have been developed, particularly 
for the simple close-packed structures: the method of 
difference equations (Wilson, 1942; Jagodzinski, 
1949a,b,e; Gevers, 1954) and the matrix method 
(Hendricks & Teller, 1942; Kakinoki & Komura, 
1952, 1954a,b, 1965; Kakinoki, 1967; Takaki, 1977) 
are shown to be equivalent (Kakinoki & Komura, 
1952; Jagodzinski, 1954). Planar faults described in 

terms of fault vectors plus differing scattering matter 
were considered in a theory which used a generalized 
Patterson function of the faulted crystal (Cowley, 
1976). 

Some direct treatments are restricted to special kinds 
of faulting in close-packed lattices (Paterson, 1952; 
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f.c.c, arrangements. 

Christian, 1954; Warren, 1969). The various types of 
faulting or polytype ordering within the stacking 
sequences of the host are commonly described by 
statistically independent probability parameters for the 
occurrence of interruptions in the correct h.c.p, or f.c.c. 
sequence, respectively, involving a so-called 
'Reiehweite' parameter s which describes the range of 
interaction. However, the parameter s takes into 
account the interaction of a given layer with the 
preceding and the following layers only formally. The 
real physical origin for the occurrence of mistakes, 
namely the interaction potentials between the layers 
depending on the stacking arrangement and the 
configurational and vibrational entropy, are not taken 
into account in most considerations. 

Jagodzinski discussed the relations between the 
statistics and the interaction energies and the tempera- 
ture for a crystal disordered one-dimensionally (Jagod- 
zinski, 1949d). The probabilities for a mistake are 
calculated by a summation over all configuration- 
dependent interaction energies, which themselves may 
depend on the temperature. When strains within the 
lattice are present - stemming from a change of the 
lattice constant along the stacking direction - the strain 
energy, stored within interfaces between regions of 
different state of order and within the volume due to 
strain fields, must be incorporated into the interaction 
potentials. From diffuse scattering patterns, measured 
at different temperatures, the probabilities can be calcu- 
lated and, in the frame of this theory, the interaction 
energies can be found. Although the Co crystals used 
are nearly strain free in the stacking direction, as shown 
in a high-resolution single-crystal X-ray experiment by 
the sharpness of the 00l interferences, independent 
of temperature (Lorenz, 1978), this link to thermo- 
dynamics could not be drawn in the present study. By a 
crude estimate for the interaction energies the degree of 
disorder should be of the order of 0.5, which is far from 
all observed values which are considerably lower. 
Therefore, other phenomena must have an important 
influence, e.g. the kinetics of the allotropic trans- 
formation f.c.c.-h.c.p, or statistical, heterophase 
fluctuations. 

III. Neutron measurements  

The measurements were carried out with two different 
samples prepared from single-crystalline material pro- 
vided by Metronex (Warsaw, Poland). The purity was 
99.9%, the mosaic spread 10' as determined by means 
of y-diffractometry. Prisms were cut by spark erosion 
with chemical etching afterwards. With the long axis 
parallel to [010] n as zone axis, the hOl plane was the 
scattering plane in all experiments. Integral and elastic 
neutron diffraction data were collected on the instru- 
ment D 10/ILL with a Cu(220) monochromator (fixed 
wavelength of 0.1439 nm) and a PG(002) analyser 
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providing an 'elastic window' of +0.5 THz. The 2/2 
contamination within the monochromatic beam was 
about 0.5%. The resolution of the instrument was 
better than 1/lOOa*,b*,e*, the furnace/supply equip- 
ment was stable to within + I K. Scans were registered 
mostly along 10/at different temperatures up to 770 K. 
Both samples were cycled a few times through the 
h.c.p. ,-, f.c.c, transition. Except for different volume 
ratios of twins (created during the transformation f.c.c. 
--, h.c.p.) and a different transformation temperature 7",, 
(~678 K for sample 1 and ~707 K for sample 2), which 
is quite normal for this type of transformation, no 
different behaviour for the various equivalent scans and 
for the different crystals under investigation could be 
detected. 

The measured profiles were corrected for spurious 
and incoherent background contributions. Fig. 2 shows 
the integral and purely elastic scans along 10/at  room 
temperature. The diffuse intensity is mainly of elastic 
origin. This also holds for the measurements at higher 
temperatures. Only the elastic data were used in the 
quantitative evaluations. Here instrumental broadening 
can be neglected (as calculated from the resolution 
function) with the exception of the data measured close 
to the cubic l = ~ and ~ positions above T,, (see below). 
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Fig. 2. Integral and purely elastic scans along (10.1) at room 
temperature. The broadening of the integral profiles is due to 
instrumental resolution effects. (The term 'integral' is used for 
measurements without an analyser.) 

The ratios of the integral breadths (defined by 
Wilson, 1942) of the reflections 100 and 101 are 2.63 
+ 0.49 and 2-38 + 0.51 for the two samples, i.e. close 
to 3. The width of the streak measured perpendicular to 
e* is comparable with that of the Bragg peaks, 
independent of any temperature variation. The intensity 
ratio of diffuse elastic to Bragg scattering is of the order 
o f  10  -3  . Even at room temperature very weak but sharp 
cubic reflections exist in a sample not cycled through 
the transition point T m (cf. Fig. 2). By comparing the 
Bragg intensities a volume ratio h.c.p.:f.c.c, of 100"1 
at room temperature can be estimated. The width of the 
cubic reflections along e* corresponds to the instru- 
mental resolution from which an extension of the cubic 
stacking sequences of at least 100 layers or 200 A (= 
20 nm) can be estimated. Two cubic twins can be 
observed at positions l = ~ and {, respectively. In each 
of the investigated samples only one of them is 
appreciable, the other one being extremely weak. The 
hexagonal, the cubic and the diffuse intensities remain 
nearly constant up to about 680 K. Some 20 K below 
Tr, the cubic reflections start to grow remarkably (Fig. 
3), while the intensity of the hexagonal ones falls by 
roughly 40%. After passing the transition point - 
detectable by a rapid decrease of the hexagonal Bragg 
intensities - very diffuse peaks are still observable at 
the hexagonal positions some ten degrees above T m. At 
40 K above T,, no intensity apart from the back- 
ground could be observed at l = 0 and l = 1. The new 
strong cubic reflections remain sharp, no diffuse 
intensity modulation along ! is observed. 

The degree of the disorder of the hexagonal and the 
cubic modifications, either as parent or as precursor 
phase, will be discussed in the following section. By 
means of a quantitative comparison of the overall 
elastic intensity distribution with an appropriate disor- 
der theory the exact probabilities for disordering and its 
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variation with temperature can be calculated. More- 
over, it can be decided whether or not disorder 
phenomena in Co are correlated with the martensitic 
transformation mechanism itself. 

IV. Compar i son  with Jagodzinski 's  disorder meory  

Jagodzinski introduced in his disorder theory interac- 
tions up to three layers (s = 3) accounting for higher 
periodic sequences in close-packed lattices. We use the 
symbols a for the probability of a mistake in the fourth 
layer of a h.c.p, sequence and (1 -/5') for the equivalent 
probability of an interruption in a f.c.c, sequence, 
limiting cases result for a--, 0, fl -, 0 (h.c.p.); a-, 1, fl --, 
1 (f.c.c.) and a -+ 0, fl --, 1 (coexisting disordered h.c.p. 
and f.c.c, sequences). The probability of finding the 
same layer as the reference layer in a distance of m 

4 
layers is given by Pm= K0 + ~ = 1  Kv x~, where K~ and 
x~ are functions of a and ft. The x~ are to be calculated 
from a characteristic equation, the Kv from the 
boundary conditions [Jagodzinski, 1949b; equations 
(10) and (21b)]. The fundamental intensity equation 
given by Wilson (1942) 

+(N~-- 1) 

Idirr = Y. (N 3 -- I m l ) ( F j F ' f + m ) e  2'tIrol 
m=--(N 3-1) 

(h - k = 3n + 1, n = integer), l is a continuous 
parameter, can be written as a function of the above 
parameters: 

' K~(1 _ x2,) 
Idiff ~ N 3 I F I 2  Z . (1) 

1 -- 2x~ cos 2n l  + x 2 
u = l  u 

Because x3, x4 and K 3, K4 are complex conjugate, 

x 3=pei~'; x 4=pei~; 

K 3 = A + iB;  K 4 = A - iB,  

(1) can be expressed in the following form: 

Idtff~-N31FI2 { Kl (1  --X21) 
1 -- 2x 1 cos 27ri + x 2 

K2(1--x~)  
+ 

1 -- 2x2 cos 2zd + x~ 

A ( 1  - p~) 
+ 

1 -- 2p cos (2zd -- ~p) + p2 

A '  (1 _p2)  
+ 

1 - 2p cos (2xl + ~p) + p2 

- 4 B p  sin ~p[(1 + p2) cos 2 ~ I -  2pcos ~p] 

x {[ 1 -- 2p cos (2zd - q)) + p21 

x [ 1 - 2p cos (2zd + 09) + p2] }-l / (2) 
1 

(A 4= A', see below), where F denotes the structure 
factor of a layer and N 3 the number of layers along the 
hexagonal e axis. 

The first four terms describe more or less diffuse 
peaks at positions l = 0, 1, +tp/2zt, -tp/27r, whose 
widths are determined by x 1, x 2 and p. 

The last term yields an asymmetric contribution 
which is negligible in the case of Co. The corrected 
experimental data were fitted to (2) giving parameters 
K 1, K 2, x 1, x 2, A, A', p and ~p. The last parameter tp was 
found to be close to 120 ° (_+0.5°), independent of the 
temperature corresponding to cubic sequences. K 1, K z, 
A, A' were taken as free parameters, thus allowing for 
different grains with different values of N 3 as would be 
the case for mainly hexagonal regimes and mainly 
cubic twins and nuclei in the specimen. From (10) 
(Jagodzinski, 1949b), one derives four equations 
coupling a and fl with xl, x2, p and ~0. Since (0 is 
determined only within _+ 0.5 o and on the other hand is 
very sensitive to a and fl, it was eliminated from these 
equations. Moreover, one has to consider an incon- 
gruent intergrowth of small 'cubic' grains with the 
'hexagonal' ones. Therefore, ~0 and also p might be in 
error for the determinations of a and fl for the 
'hexagonal' grains. Eliminating also p leaves us with 
two equations from which a and fl can be determined, 
with the measured values of x~ and x 2 only. In this 
procedure it turns out that a is generally very well 
determined (_+0.2%), while fl, which comes out to be 
between 0 and 15%, is practically undertermined 
(_+50%!). On the other hand, from the values ofp  and tp 
the probabilities a and fl for faults within the 'cubic' 
grains can be determined: with ~0 _~ 120 ° we obtain good 
values for fl, while a is now totally undetermined (~_ 
90% _+ 100%). Fig. 4 shows the experimental data 
together with the fitted profiles for the two samples and 
for the different temperatures. A logarithmic scale was 
chosen in order to emphasize the wings of the peaks 
which are most important for disorder scattering. The 
overall agreement is remarkably good for T < T m. 
Above T m it was not possible to fit the measured 
profiles with (2). However, in the derivation of (2) 
terms of the form 

N3+1 2rd(N a + 1) 2Kv{2x 2 v -  x,(1 + x2,) cos 27d + x ,  cos 

N3+1 -- 2X N3+2 COS N 3 27rl + x~ cos (N 3 1)27d} 

× (1 - 2 x  cos 2zd + x2) -2 (3) 

were neglected because they are small for large N 3 
[Jagodzinski, 1949b, equation (22)]. Consequently, the 
broad peaks at the hexagonal positions above T m 
suggest that N 3 (hexagonal) is not large. Indeed, adding 
the terms (3) in (2) ['modified equation (2)'] yields a 
reasonable fit for the 'hexagonal' peaks. From this, 
values for N 3 were determined in sample 1" N 3 = 39 + 
7 a t T = 6 9 8 K ,  35 + 5 at T- -  728 K; sample 2: N 3=  
25 -+ 3 at T =  717 K, whereas at T =  758 K practically 
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no 'hexagonal intensity' could be detected. The agree- 
ment of the fits with the modified equation (2) for the 
'cubic'  peaks is worse, because the interferences are so 
narrow that instrumental resolution effects should have 
been included. No such attempts have been made 
because these peaks are further influenced by 
extinction. 

The probabilities a (hexagonal) and fl (cubic) are 
plotted as functions of temperature in Fig. 5. Both 
values remain almost constant over the whole tem- 
perature regime. The small increase of a above Tm 
(which is, however, within the e.s.d.) may be explained 
by the small particles: considering the boundary layers 
of  a particle as a fault, the probabilities at T = 698, T = 
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Fig. 4. Elastic scans along (10.l) at different temperatures together 
with the fitted profiles for the two sample crystals. (a) Sample 1; 
(b) sample 2. The fits are according to equation (2) except for the 
data at T = 728 K (sample 1) and T = 758 K (sample 2). In the 
former case the fit is according to the modified equation (2) (see 
text), in the latter case only two single Gaussian profiles are used. 
Note the different behaviour of the cubic twins in the two 
samples. 

728 (sample 1) and T = 717 K (sample 2) are a >  5, 6 
and 8%, respectively, in gross agreement with the 
observed values. Thus it may be concluded that the 
probability a 'inside' the domains stays constant also 
above T,,,. The same holds for fl (cubic) below T,,,, for 
which a slight decrease might be suspected (see Fig. 5). 
The variation of the relative intensities of the 'hexa- 
gonal' and 'cubic'  peaks thus can only be explained by 
a variation of the values of N 3, i.e. hexagonal and cubic 
regimes exist together and start to grow or diminish 
when the temperature is changed. A further indication 
for the conclusion of unchanged values a and fl are the 
constant values for the coefficients K v [see equation 
(2)1. 

In the single crystals of Co investigated, the 
hexagonal and the cubic modification always coexist at 
temperatures below T m. Both phases are disordered 
only by a small amount, roughly 2 .5% for the h.c.p. 
and 0 .5% for the gc.c. regimes. It is remarkable that 
the £c.c. arrangements are realized in the state of 
long-range order with a low density of stacking faults 
within the stable h.c.p, mother phase. These cubic 
stacking sequences are extended along the stacking 
direction beyond 100 layers. By the ratio of the integral 
breadths of the hexagonal 100 and 101 reflections we 
conclude that the faults are mainly of the growth type. 
These results are hardly comparable with findings by 
powder investigations (Edwards & Lipson, 1942; 
Paterson, 1952; Anantharaman & Christian, 1956; 
Houska, Averbach & Cohen, 1960; Toth, Day, La 
Force & Ravitz, 1964; Creagh, Bailey & Wilson, 1975) 
where both - deformation and growth - faults in the 
h.c.p, phase were found. Moreover, there the proba- 
bilities for the density of faults vary considerably due to 
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Fig. 5. Probability for a cubic sequence, if the foregoing three 
layers are hexagonal (a) or cubic (fl) for sample 1 (0) and 
sample 2 (m) as a function of the temperature difference from the 
transition temperature T,,. Where error bars are omitted, the 
error is smaller than the symbol. The probabilities relate to 
hexagonal (a) and cubic (fl) grains; see text. The solid and dashed 
lines for a above T,, and fl below T,~ are only speculative (see 
text). 
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a different prehistory, state and kind of sample. The 
absolute values are generally higher than ours, a 
comparable value of 7% was found by Creagh et al. 
(1975) in the h.c.p, phase. This might be due to a 
misinterpretation of TDS or due to a different state of 
order of the smaller 'X-ray crystals'. Furthermore, the 
density of faults varies not only from sample to sample, 
but also from grain to grain in one powder specimen 
(Toth et al., 1964). Concerning the existence of the 
f.c.c, precursor phase below T m, Houska et al. (1960) 
and Creagh et al. (1975) report an almost perfect 
ordering in full accordance with our results. 

The stacking faults within the hexagonal modifi- 
cation are not in thermodynamic balance, as no 
reversible change of the stacking fault width in the layer 
plane with the temperature could be detected. Because 
the volume ratio hexagonal/cubic below T m amounts to 
about 100:1 and one cubic nucleus extends over more 
than 100 layers, the thickness of the hexagonal 
sequences corresponds to more than 104 layers. 
Assuming a uniform distribution of faults a probability 
of a mistake of 2.5% indicates an interruption in the 
stacking sequence after about 40 steps. If such faults 
were responsible for the formation of extended cubic 
sequences, only every 250th fault would be effective. 
For such behaviour there is no clear indication. On the 
other hand, because the value of 2.5% represents an 
average over the whole volume, statistical fluctuations 
might lead to an accumulation of faults which itself 
could serve as the nuclei for the extended cubic 
sequences. In this case the thickness of the hexagonal 
layer packets could not be estimated. 

However, in the temperature regime below T m, where 
the f.c.c, nuclei start to grow considerably, the degree 
of disorder in the h.c.p, phase remains unaltered, i.e. the 
s t a c k i n g  disorder remains unaffected, which is difficult 
to understand in the accumulation concept. Therefore 
the stacking faults cannot be responsible for the 
transformation h.c.p. --, f.c.c. This is also plausible 
because of the narrow similarity of the geometric 
arrangements and the specific volume in both 
modifications of Co; a simple stacking misfit represents 
no serious interruption. 

Internal interfaces like incoherent grain boundaries 
or twin boundaries or special dislocation arrange- 
ments probably play a decisive role for the formation 
of the (cubic) nuclei and the state of order within the 
nuclei. The existence of such internal interfaces or 
defect arrangements is normal in a crystal which 
undergoes a martensitic type of transformation. Conse- 
quently, stresses and strains have the most important 
influence on the transition behaviour and on the state of 
order below T m. 

At this stage of the discussion it should be 
emphasized that no distinction can be made in our 
experiment between a true stable or only a metastable 
state of the daughter f.c.c, phase. A metastable state 

could be formed either during the sample crystal's 
growth process by the formation of energy barriers 
preventing the full transformation f.c.c. --, h.c.p. 
(crystals are grown from the melt, i.e. every crystal was 
in the f.c.c, phase before!) or by low-frequency 
heterophase fluctuations (Cook, 1975). In the latter case 
quasielastic scattering around 10~ should occur whicta 
in the present experiment is hidden in the energy 
resolution of the instrument. 

The situation above T m obviously is different. The 
f.c.c, modification is now the stable phase and h.c.p. 
sequences - if any - could play the same role as the 
f.c.c, nuclei below T m. But some ten degrees above T m 
only small hexagonally ordered layer packets exist 
which vanish completely with an increase of tem- 
perature. Another explanation for the broad diffuse 
peaks at the hexagonal positions would be a kind of 
short-range order of A B A B  sequences within the cubic 
phase which seems, however, unlikely in comparison 
with the former interpretation. In any case, in contrast 
to the f.c.c, nuclei below T m, no h.c.p, nuclei can be 
responsible for the back transformation f.c.c. --, h.c.p. 
The cubic phase above T m is, within the limits of our 
experimental resolution, again well ordered. Single 
planar or linear defects of another kind are not visible 
in this conventional type of a scattering experiment. 
Nevertheless, there must be some kind of memory 
effect within the f.c.c, regimes for the back trans- 
formation. This can be concluded from the fact that in 
one sample the cubic twin corresponding to the l = 
position in reciprocal space dominates after repeated 
cycling across T m, in the second sample the other twin 
(l = ~) plays an analogous role. 

We conclude from these experimental findings that 
the degree of stacking disorder is not correlated with 
the transformation. The transition mechanism is, 
however, coupled with other types of faults which are 
less frequent than stacking faults. A more detailed 
discussion is given in the next section. 

The existence of only growth  faults within the h.c.p. 
modification can be understood from the fact that 
deformation faults, possibly formed during the growth 
process, are easily removed by gliding half-dislocations 
of the Shockley type along the basal plane (see, for 
example, Weertman & Weertman, 1964). 

V. Aliotropic transformation 

As discussed in the previous section, the origin of the 
h.c.p. ~ f.c.c, transition is restricted to a few cubic 
nuclei which are preformed below T m. The phase 
transition corresponds to a nucleus growth and not to a 
nucleus formation process. These nuclei are well 
ordered packets of at least 100 layers with the A B C  
sequence. Because the difference in the free energies is 
relatively small, the nucleus growth process is coupled 
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with strains. These strains are not likely to be due to the 
stacking faults in the hexagonal AB sequence (sharp 
00l reflections!), but are probably due to incoherent 
interfaces or other defect aggregations. The trans- 
formation mechanism can be thought of as a simple 
shear parallel to the basal plane where the dislocation 
lines with Burgers vector b = [210] can glide easily. 
Approaching the transition temperature, strains can be 
diminished. Possibly this dislocation mechanism will be 
triggered by an elastic shear weave which shows an 
anomalous temperature behaviour in the critical region 
(Frey et al., 1979). 

For the back transformation f.c.c. --, h.c.p, a different 
picture seems to be responsible, as no preformed 
hexagonal nuclei exist above T m. Additionally, the 
transposition mechanism must be more complex for 
achieving the correct . . . A B A B . . .  stacking starting 
from the cubic A B C  stacking. Seeger (1953, 1956) 
proposed a model for the transition where a special 
dislocation arrangement of two pole and two Shockley 
half-dislocations are combined. The running half- 
dislocations on a helix-like plane around the [111] pole 
line perform the transition. In this model the defect 
configuration corresponds to a 'nucleus' for the new 
hexagonal phase, its 'growth' is the Seeger mechanism, 
which can also be thought to be a migration of 
interfaces between the old (f.c.c.) and the new (h.c.p.) 
phase. The hysteresis effect is explained within the 
frame of this model by a hindrance of the movement of 
the partials caused by repulsive forces between these 
dislocations after performing one (or a few) turn(s) 
around the pole dislocation. 

Because these 'nuclei' are fixed within the f.c.c. 
matrix the crystal may exhibit a memory effect. A 
growing together of different hexagonal grains pro- 
duces either stacking faults of any kind or grain 
boundaries if the pole dislocations belong to different 
cubic (111) directions. Seeger suggests that the special 
dislocation arrangement is not too frequent and could 
therefore be absent in very small grains. This is one 
explanation for the observation of a pure f.c.c, phase at 
room temperature when using finely powdered samples. 
In another explanation, by Knapp & Dehlinger (1956), 
a strong hindrance of the running dislocations is sup- 
posed either by grain boundaries or by interfaces or 
surfaces which prevent the full back transformation 
f.c.c. --, h.c.p. 

In a single crystal, however, the f.c.c. --, h.c.p. 
transformation should be complete, disregarding the 
unavoidable twinning (at normal pressure conditions). 
Cubic sequences may survive when the shear mecha- 
nism is stopped by internal interfaces, dislocation 
nodes, etc. 

However, while our experimental findings give direct 
evidence for the above picture of the h.c.p. -~ f.c.c. 
transformation, they are not inconsistent with Seeger's 
model for the f.c.c. --, h.c.p, back transformation. The 

nucleus growth processes agree with the martensitic 
character as a diffuseless and rapid transformation. 
Thermal activation could enable an overcoming of 
energy barriers during the transition processes. How- 
ever, the formation of the nuclei are not thermally 
activated but coupled with special static defects within 
either modification of Co. 

VI. Conclusions 

The quantitative measurement of both diffuse and 
sharp interferences in a small section of the reciprocal 
space of cobalt, carried out at different temperatures in 
the hexagonal and in the cubic modification, allows for 
a simultaneous study of order phenomena and of the 
behaviour of a crystal transforming martensitically. 
The amount of stacking disorder in the h.c.p, modi- 
fication is small in a single crystal and scarcely 
influenced by the allotropic transformation, since it is 
temperature independent and also unaffected by cy- 
cling the sample through the transition point. On the 
other hand, defects other than stacking faults are 
important for the forward and backward transfor- 
mation. This situation is dissimilar to transitions in 
compounds (like SiC) where an equivalent allotropic 
transformation of first order is accompanied by 
extensive disordering and even with the formation of 
polytype structures. The martensitic transition in cobalt 
in both directions is a heterogeneous process, where a 
nucleus growth represents the .transformation mecha- 
nism. Nuclei are either preformed regimes of the 
daughter phase or special defect arrangements. 

Unfortunately, there exist only a few detailed 
investigations concerning martensitic transformation 
mechanisms. This is mainly due to experimental 
difficulties when observing phase transitions of a strong 
first order: a challenge for future experimental work. 
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Abstract 

X-ray structure factors of MgF 2 were derived from 
accurate measurement of single-crystal diffraction 
intensities. The crystal charge density was analyzed in 
terms of multipole expansions centered at the ionic 
sites. Separation of electronic and dynamic defor- 
mations was effected by using, in the difference series 
calculations, anisotropic Debye-Waller factors 
obtained in the neutron diffraction study of Vidal- 
Valat, Vidal, Zeyen & Kurki-Suonio [Acta Cryst. 

0567-7394/81/060826-12501.00 

(1979), B35, 1584-1590]. The charge density was 
found to be composed of well defined local Mg 2+ ions 
and slightly enlarged and more diffuse F -  ions with 
0.50 electrons distributed more widely in the unit cell. 
Nonspherical deformations of electronic origin were 
found significant up to fourth order, with the exception 
of the vanishing dipole moment of fluorine. These 
deformations emphasize the ionic nature of the crystal 
by violating the symmetry of the immediate surround- 
ings and by decreasing the charge density in all of the 
octahedral bonding directions of Mg 2+ down to typical 
ionic values. 
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